八月瓜首页 > 专利查询 > C08有机高分子化合物;其制备或化学加工;以其为基料的组合物 >正文

一种D-A型共轭聚合物及其制备方法和应用及热电材料

基本信息

  • 申请号 CN201811377299.7 
  • 公开号 CN109627428A 
  • 申请日 2018/11/19 
  • 公开日 2019/04/16 
  • 申请人 武汉工程大学  
  • 优先权日期  
  • 发明人 刘治田 胡言川 李鹏程 高翔 王佳欣  
  • 主分类号 C08G61/12 
  • 申请人地址 430000 湖北省武汉市东湖新技术开发区光谷一路206号 
  • 分类号 C08G61/12 
  • 专利代理机构 北京轻创知识产权代理有限公司 11212 
  • 当前专利状态 发明专利申请公布 
  • 代理人 杨立 
  • 有效性 审查中-实审 
  • 法律状态 审查中-实审
  •  

摘要

本发明涉及一种D‑A型共轭聚合物及其制备方法和应用及热电材料,制备的吡咯并吡咯二酮和3,4‑乙烯二氧噻吩衍生物的共轭聚合物,通过旋涂的方式,掺杂较低浓度的FeCl展开

权利要求书


1.一种基于吡咯并吡咯二酮和3,4-乙烯二氧噻吩衍生物的共轭聚合物,其特征在于,所述共轭聚合物具有以下通式所示的结构: 其中,R为烷基,n为13-19。
2.根据权利要求1所述的共轭聚合物,其特征在于:所述R烷基链为CmH2m+1,其中m=18-24,该烷基链为直链烷基链或支链烷基链。
3.一种根据权利要求1或2所述的共轭聚合物在制备热电材料中的应用。
4.一种热电材料,其特征在于:包含权利要求1或2所述的共轭聚合物。
5.根据权利要求4所述的热电材料,其特征在于:还掺杂有FeCl3/CH3NO2,FeCl3/CH3NO2中FeCl3的浓度为0.01mmol/L到10mmol/L。
6.一种基于吡咯并吡咯二酮和3,4-乙烯二氧噻吩衍生物的共轭聚合物的制备方法,其特征在于:第一步:将噻吩基吡咯并吡咯二酮、1-溴-2-辛基十二烷和碳酸钾在DMF溶剂中145摄氏度下反应,得到化合物1;第二步:将化合物1和N-溴代丁二酰亚胺以三氯甲烷作溶剂在零摄氏度下避光混合,并于室温反应得到化合物2;第三步:将EDOT和N-溴代丁二酰亚胺以DMF作溶剂在零摄氏度下避光混合,并于室温反应,得到化合物3;第四步:将镁和2-溴噻吩在乙醚溶剂中40摄氏度下反应,得到格式试剂,再和化合物3混合,在催化剂Ni(dpp)Cl2的作用下,在40摄氏度下反应得到化合物4;第五步:将化合物4和正丁基锂在-78摄氏度下以THF作溶剂混合,移至室温下反应,再在-78摄氏度下加入三甲基氯化锡,移至室温反应,得到化合物5;第六步:将化合物5和化合物2在甲苯溶剂中混合,以Pd(PPh3)4作催化剂,110摄氏度下反应,得到化合物6,化合物6即为基于吡咯并吡咯二酮和3,4-乙烯二氧噻吩衍生物的共轭聚合物,n为13-19。
展开

说明书

技术领域
本发明涉及有机光电子材料领域,具体涉及一种D-A型共轭聚合物及其制备方法和应用及热电材料。
背景技术
热电材料作为一种新型的环境友好型绿色能源材料,能够实现热能与电能的直接转换,相比于传统的热电转化设备无需机械构件的介入且在极低的温度下也能实现热与电的有效转换,因此其热浪费率较低,可实现无污染、低能耗的转换能量。
在废热利用,无机械制冷方面具有极大的优势,在可持续发展方面具有广泛的应用前景。
给体-受体型共轭聚合物是典型的窄带隙共轭聚合物,是一类很好的热电材料,给体-受体型共轭聚合物带隙较窄是其特殊结构决定的。
一般电子给体单元(D)和电子受体单元(A)交替共聚得到的给体-受体型共轭聚合物,给体单元和受体单元对材料的最高占据分子轨道(HOMO)及最低未占分子轨道(LUMO)能级起到一定的作用。
电子给体单元可以提高HOMO轨道能级,而电子受体单元能降低LUMO轨道能级。
并且强给体与强受体之间存在很强的推拉作用,使得负电荷倾向于向受体单元移动,正电荷倾向于给体单元移动,有助于增加分子内电荷的转移强度,增加分子间的相互作用,促进聚合物分子链间的π-π堆积和薄膜的结晶性,从而有利于分子间的电荷传输。
吡咯并吡咯二酮单元(DPP)具有很好的平面性骨架,具有很强的分子间相互作用,基于DPP的聚合物通常具有较高的载流子迁移率,有利于在经过合适条件氧化掺杂后实现较高的电导率。
然而由于DPP具有极强的拉电子单元,基于DPP的与噻吩或者噻吩并噻吩的聚合物通常HOMO能级较低(如Macromolecules 2017,50,914),因而需要较高含量的掺杂剂才能获得较好的电导率,但高掺杂浓度不利于材料的塞贝克系数的提供。
发明内容
本发明提供一种基于吡咯并吡咯二酮和3,4-乙烯二氧噻吩衍生物的共轭聚合物,通过引入含强给电子单元的3,4-乙烯二氧噻吩(EDOT)和噻吩的片段与其共聚调节其HOMO能级,进而通过氧化掺杂后可使其具有较高电导率和塞贝克系数。
本发明结合多年来在共轭聚合物设计与合成、导电高分子材料及热电材料等方面的研究,通过设计合成含吡咯并吡咯二酮单元和EDOT衍生物单元的D-A型热电聚合物材料并对其热电性能进行测试。
结果证明此聚合物具有较高的电导率和塞贝克系数,其热电功率因数高于大部分已报道的有机热电材料。
本发明所采用的技术方案如下:本发明所提供的一种基于吡咯并吡咯二酮和3,4-乙烯二氧噻吩衍生物的共轭聚合物,具有以下通式所示的结构: 其中,R为烷基。
所述R烷基链为CmH2m+1,其中m=18-24,该烷基链为直链烷基链或支链烷基链。
研究发现,上述共轭聚合物可以用于制备热电材料中,所述热电材料包括上述共轭聚合物,可以通过掺杂FeCl3/CH3NO2获得,掺杂的FeCl3/CH3NO2的浓度为0.01mmol/L到10mmol/L。
掺杂后的聚合物热电材料具有较高的电导率和塞贝克系数。
本发明还提供前面结构式所表示的基于吡咯并吡咯二酮和3,4-乙烯二氧噻吩衍生物的共轭聚合物的制备方法,具体操作步骤为:第一步:将噻吩基吡咯并吡咯二酮、1-溴-2-辛基十二烷和碳酸钾在DMF溶剂中145摄氏度下反应,得到化合物1; 第二步:将化合物1和N-溴代丁二酰亚胺以三氯甲烷作溶剂在零摄氏度下避光混合,并于室温反应过夜得到化合物2; 第三步:将EDOT和N-溴代丁二酰亚胺以DMF作溶剂在零摄氏度下避光混合,并于室温反应,得到化合物3; 第四步:将镁和2-溴噻吩在乙醚溶剂中40摄氏度下反应,得到格式试剂,再和化合物3混合,在催化剂Ni(dpp)Cl2的作用下,在40摄氏度下反应得到化合物4; 第五步:将化合物4和正丁基锂在-78摄氏度下以THF作溶剂混合,移至室温下反应,再在-78摄氏度下加入三甲基氯化锡,移至室温反应,得到化合物5; 第六步:将化合物5和化合物2在甲苯溶剂中混合,以Pd(PPh3)4作催化剂,110摄氏度下反应,得到化合物6,化合物6即为基于吡咯并吡咯二酮和3,4-乙烯二氧噻吩衍生物的共轭聚合物,n为13-19。
优选的,基于吡咯并吡咯二酮和3,4-乙烯二氧噻吩衍生物的共轭聚合物的合成步骤如下:化合物1的合成:将噻吩基吡咯并吡咯二酮和碳酸钾置于两口瓶中,以N,N-二甲基甲酰胺(DMF)做溶剂常温通氮气保护30min后,升温至145℃,加入1-溴-2-辛基十二烷并保持此温度反应12小时。
减压蒸馏除去DMF再用二氯甲烷和水萃取分液后减压除去溶剂,再通过二氧化硅色谱法纯化后得到化合物1。
化合物2的合成:避光条件下将化合物1置于单口瓶中,在冰浴条件下加入三氯甲烷降温半小时,称取一定量的N-溴代丁二酰亚胺(比例为1比2.1)溶解于三氯甲烷中,通过滴液漏斗滴加在单口瓶中,滴加完毕后,避光室温反应15小时。
减压除去溶剂后,通过二氧化硅色谱法纯化,得到化合物2。
化合物3的合成:避光条件下将EDOT置于单口瓶中,在冰浴条件下加入N,N-二甲基甲酰胺(DMF)降温半小时,称取一定量的N-溴代丁二酰亚胺(比例为1比2.1)溶解于DMF中,通过滴液漏斗滴加在单口瓶中,滴加完毕后,避光室温反应10小时。
反应完后,将原溶液倒入冰去离子水中沉降,将固体过滤后,通过二氧化硅色谱法纯化,得到化合物3。
化合物4的合成:将镁屑置于两口瓶中,惰性气体保护氛围下,加入无水处理过的乙醚作为反应溶剂,使用滴液漏斗逐步滴加2-溴噻吩,滴加完后40℃下反应1小时,制备格式试剂(a)。
在另一两口瓶中加入催化剂Ni(dpp)Cl2和化合物3,惰性气体保护氛围下,将格式试剂(a)通过滴液漏斗逐步滴加进去,滴加完毕后,40℃下反应10小时。
反应完后,加入去离子水猝灭多余的格式试剂,用二氯甲烷和水萃取分液,减压除去溶剂后,通过二氧化硅色谱法纯化,得到化合物4。
化合物5的合成:将化合物4置于两口瓶中,惰性气体保护氛围下,加入无水无氧处理过的四氢呋喃(THF)作为反应溶剂,将反应瓶移至-78℃下降温10min,随后向反应瓶中逐滴加入正丁基锂(BuLi),滴加完毕后搁置5min再移至室温条件下反应1小时。
反应完毕后,再次移至-78℃下降温10min,随后向反应瓶中逐滴加入三甲基氯化锡溶液,滴加完毕后移至室温反应5小时。
反应完毕后,用去离子水淬灭,随后用石油醚和水萃取分液,减压除去溶剂后,用无水乙醇重结晶,得到化合物5。
化合物6的合成:将化合物5和化合物2置于反应管中,加入催化剂Pd(PPh3)4,惰性气体保护氛围下,加入无水无氧处理过的甲苯作为反应溶剂,110℃下反应72小时,反应完毕后,用甲醇沉降,随后将固体聚合物后进行抽提,得到化合物6,即为目标共轭聚合物。
本发明的技术方案,相比现有有机热电材料而言,所产生的有益效果如下:通过引入强受体单元吡咯并吡咯二酮(DPP)以及强给体EDOT衍生物单元合成高效的热电材料,通过改变材料结构单元进一步探索纯有机聚合物热电材料的热电性能,为此类的体系提供理论基础,同时对聚合物的掺杂条件进行优化,提高其功率因数,与其他类有机热电材料形成对比,提供新的数据支撑。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:图1是本发明的共轭聚合物热电材料的紫外可见光吸收光谱图;
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
实施例1:化合物1的制备在250ml两口瓶圆底烧瓶中加入噻吩基吡咯并吡咯二酮(5g,16.65mmol)和碳酸钾(6.08g,83.24mmol),溶剂N,N-二甲基甲酰胺(DMF)通过硫酸镁除水1小时后过滤,将过滤后的溶剂(100ml)加入到两口瓶圆底烧瓶中,常温通氮气保护30min后,升温至145℃,随后加入1-溴-2-辛基十二烷(13.24g,36.62mmol)并保持此温度反应12小时。
反应完毕后降温至50℃左右,减压蒸馏除去绝大多数DMF,再用二氯甲烷和水萃取分液两到三次后,MgSO4干燥并过滤,减压除去溶剂,再通过二氧化硅色谱法纯化用,(乙酸乙酯:石油醚=1:20)洗脱,真空干燥得到深红色固体4.63g(化合物1),产率32.29%,其反应式如下: 实施例2:化合物2的制备避光条件下在250ml单口圆底烧瓶中加入化合物1(3g,3.48mmol),在冰浴条件下加入三氯甲烷(60ml)降温半小时,称取N-溴代丁二酰亚胺(1.3g,7.31mmol)溶解于三氯甲烷(20ml)中,通过滴液漏斗滴加在单口圆底烧瓶中,滴加完毕后,避光室温反应15小时。
减压除去溶剂后,通过二氧化硅色谱法纯化(二氯甲烷:石油醚=1:4)洗脱,得到纯产物后,用乙醇进一步重结晶提纯,真空干燥得到深红色固体2.36g(化合物2),产率66.49%,其反应式如下: 实施例3:化合物3的制备避光条件下在250ml单口瓶圆底烧瓶中加入EDOT(2.84g,20mmol),在冰浴条件下加入N,N-二甲基甲酰胺(DMF)60ml降温半小时,称取N-溴代丁二酰亚胺(7.48g,42mmol)溶解于DMF(40ml)中,通过滴液漏斗滴加在单口圆底烧瓶中,滴加完毕后,避光室温反应10小时。
反应完后,将原溶液倒入冰去离子水(400ml)中沉降,将固体过滤后,通过二氧化硅色谱法纯化(二氯甲烷:石油醚=1:10)洗脱,并用无水乙醇进一步重结晶得到白色固体5.1g(化合物3),产率85.01%其反应式如下: 实施例4:化合物4的制备在100ml三口圆底烧瓶中加入镁屑(947mg,39mmol),惰性气体保护氛围下,加入无水处理过的乙醚(20ml)作为反应溶剂,使用滴液漏斗逐步将经乙醚(20ml)溶解过的2-溴噻吩(4.89g,30mmol)滴加到三口圆底烧瓶中,此时反应温度为35℃,滴加完后在40℃下反应1小时,制备格式试剂(a)。
在另一250ml两口圆底烧瓶中加入催化剂Ni(dpp)Cl2(32.5mg)和化合物3(3g,10mmol)惰性气体保护氛围下,用30ml无水乙醚溶解,将格式试剂(a)通过滴液漏斗逐步滴加进入两口圆底烧瓶,此时反应温度为35℃,滴加完毕后,40℃下反应10小时。
反应完后,加入去离子水(10ml)猝灭未反应的格式试剂,随后用二氯甲烷和水萃取分液两到三次,减压除去溶剂后,通过二氧化硅色谱法纯化(二氯甲烷:石油醚=1:4)洗脱,得到浅黄色固体1.4g(化合物4),产率45.69%,其反应式如下: 实施例5:化合物5的制备在100ml两口圆底烧瓶中加入化合物4(1.24g,4.05mmol),惰性气体保护氛围下,加入无水无氧处理过的四氢呋喃(THF)(20ml)作为反应溶剂,将反应瓶移至-78℃下降温10min,随后向反应瓶中逐滴加入正丁基锂(BuLi)(3.72ml,9.31mmol,2.5mol/L),滴加完毕后-78℃下搁置5min再移至室温条件下反应1小时。
反应完毕后,再次移至-78℃下降温10min,随后向反应瓶中加入三甲基氯化锡(1.85g,9.31mmol),滴加完毕后移至室温反应5小时。
反应完毕后,用去离子水(3ml)淬灭,随后用石油醚和水萃取分液两到三次,减压除去溶剂后,用无水乙醇多次重结晶,得到黄绿色固体418mg(化合物5),产率16.34%,其反应式如下: 实施例6:化合物6的制备将化合物5(316mg,0.5mmol)和化合物2(509.6mg,0.5mmol)置于反应管中,加入催化剂Pd(PPh3)4(11.55mg),惰性气体保护氛围下,加入无水无氧处理过的甲苯(25ml)作为反应溶剂,110℃下反应72小时,反应完毕后,用甲醇沉降,随后将固体聚合物后进行抽提,抽提溶剂分别为甲醇、丙酮、正己烷、氯仿、甲苯,得到最终目标产物,为深蓝色固体(化合物6),产率56.3%,其反应式如下: 实施例7:有机热电材料的制备及测试以实施例1-6制备的聚合物为有机热电材料进行热电性能测试。
以1.25*1.25cm的载玻片为基底,使用前用超纯水,丙酮,异丙醇依次清洗然后用氧等离子体处理10分钟,随后将氯苯完全溶解的聚合物溶液50μL(5mg/ml)均匀滴覆在基底上,采用旋涂仪旋涂(转速1500rpm到4000rpm)成膜,旋膜完成后在50℃热台下干燥10分钟。
采用p型氧化掺杂,氧化掺杂剂为FeCl3,选取CH3NO2作溶剂。
配制FeCl3浓度为0.01mmol/L到10mmol/L的FeCl3/CH3NO2溶液。
采用在薄膜表面溶液旋涂掺杂的方式,将200μL的掺杂剂均匀滴覆在聚合物薄膜上并放置1min,使其充分氧化掺杂,随后旋干(转速1500rpm到4000rpm),即得掺杂后的聚合物薄膜。
如图1所示,通过薄膜的紫外可见吸收光谱可以看到,经过薄膜表面溶液旋涂掺杂后,薄膜在831nm处的吸收峰强度降低,形成了在波长为1150nm左右的新吸收峰,说明采用薄膜表面溶液旋涂掺杂的方式可以对聚合物6进行有效的氧化掺杂。
通过四探针法测试掺杂后的聚合物薄膜的方块电阻,用台阶仪测试薄膜厚度,从而可获得聚合物薄膜的电导率。
利用加热器和散热片实现样品两端温差,用热电偶记录温差,用6位半万用表记录薄膜两端在不同温差下产生的电势差,从而可获得聚合物薄膜的塞贝克系数。
通过薄膜厚度的优化及掺杂条件的选择,经过大量的实验测试可得以下热电数据,如表1所示:表1 由此表可以看出,该聚合物热电材料可在较低掺杂浓度下,获得较高的电导率和塞贝克系数,从而使其具备较高的热电功率因数,其功率因子可达200μW/m·K2以上,高于目前文献报道的大部分窄带系共轭聚合(如Polym.Chem.,2017,8,4644;Macromol.Rapid Commun.,2017,38,6等)。
以上数据可以说明,本发明的吡咯并吡咯二酮和3,4-乙烯二氧噻吩衍生物的共轭聚合物热电材料有很大的发展潜力。
尽管己经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情況下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。
展开

查看更多专利详情信息请先登录或注册会员

相关专利类别推荐

获取手机验证码,即可注册成为会员

专利详情咨询

咨询内容

姓名

手机

验证码

用户登录

手机号

手机验证码

提示

不能再减了!!!

提交成功

八月瓜客服中心已经收到您的信息,正在为您派遣知识产权顾问。知识产权顾问会携带贴心的服务以闪电搬的速度与您联系。

扫一扫关注八月瓜微信 创业一手掌握